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Hit and run crash is a punishable offense. In many cases, it involves higher severity levels of
the associated roadway users due to the delay of emergency help. For vulnerable road users
like pedestrians and bicyclists, this issue is more gruesome. We present an analysis of the
effect of crash, geometric, and environmental characteristics on the bicycle-involved hit
and run crashes by using six years of Louisiana crash data with an application of fast
and frugal tree (FFT) heuristics algorithm. Over 1000 bicycle-involved hit and run crashes
occurred in Louisiana out of around 108,000 hit and run crashes during 2010–2015. The
fatal bicycle crashes represent 10% of the total fatal hit and run crashes. Additionally, hit
and run bicycle crashes represent 22% of total bicycle crashes in Louisiana. In the prelim-
inary analysis, we provided statistical significance test of the key contributing factors for
two major groups (bicycle-involved hit and run crashes, and not bicycle-involved hit and
run crashes). We divided the complete dataset into two separate datasets: training data
for model development, and testing data for performance evaluation. FFT identifies five
major cues or variable threshold attributes that contribute significantly in predicting
bicycle-involved crashes. These cues include fatal and injury crashes, right angle/turning/-
head on collisions, city streets/others, intersection, and residential/mixed localities. The
balanced accuracy is around 76% for both training and testing data. The current model
shows higher sensitivity than other complex and black box machine learning models
(e.g., support vector machine, random forest). Findings of our study will provide valuable
insights for hit and run bicycle crash reduction in both planning and operation levels.
� 2018 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Hit and run crashes refer to crashes where the at-fault (responsive for crash occurrence) drivers leave the crash location
without helping victims or reporting the occurrence of crashes to relevant authorities. These crashes could significantly
increase the probability of severe injuries or fatalities, specifically for vulnerable roadway users like pedestrians and
bicyclists, due to delays in emergency assistance. Although hit and run is a severe crime according to the law enforcement
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agencies and drivers who conduct such crime will face serious criminal charges if caught later. However, the frequency of hit
and run crash occurrences are still high. Solnick and Hemenway (1994) defined hit and run as ‘‘an interesting crime because
it is typically spontaneous and not committed by career criminals. It is also a crime that has received virtually no research
attention”.

A bicycle as a mode of transport has many environmental and societal benefits as well as health benefits. At the same
time, it makes bicyclists as one of the most vulnerable roadway user groups. According to National Highway Traffic
Safety Administration (2017), ‘there were 818 bicyclists killed in motor vehicle traffic crashes in the United States, an
increase from 729 in 2014. An additional estimated 45,000 bicyclists were injured in crashes in 2015’. When a collision hap-
pens, a significant probability exists that the bicyclist will sustain an injury, while the likelihood is small that the vehicle
occupants will be injured (Haworth and Debnath, 2013; Turner et al., 2017). The vulnerability of the bicyclists can be
increased when a hit and run crash victimizes them. Tay et al. (2008) showed that the odds of a driver fleeing the crash scene
are 4.67 times more likely in vehicle-bicycle crashes when compared to vehicle-vehicle collisions. During 2010–2015,
108,803 hit and run crashes occurred in Louisiana. Among them, 1.01% was recorded as bicycle-involved hit and run crashes.
The fatal bicycle crashes represent 10% of the total fatal hit and run crashes. Moreover, hit and run bicycle crashes represent
22% of total bicycle crashes in Louisiana, which triggers another research scope that is currently not examined in this current
study. Such a high percentage in terms of all bicycle crashes require in-depth investigation. This focused on understanding
the real roadway environment which eventually triggers a driver flee a hit and run bicycle crash scene. The common asser-
tion is that drivers usually do not flee the crash scene unless there is a possibility of higher punishment or occurrence of a
severe injury crash.

Based on a six-year (2010–2015) hit and run crash dataset in Louisiana, we applied first and frugal tree (FFT) heuristics
algorithm to select significant factors regarding crash, geometric and environmental characteristics and extract the decision
rules for bicycle involvement in the hit and run crashes. Our goal is to make the case that the application lens of fast-and-
frugal heuristics is well suited to describing and improving applied decision making for the safety improvement of hit and
run vehicle-bicycle collisions. The intent of this paper is to demonstrate an approach that can be used to understand better
the factors that influence the occurrences of bicycle-involved hit and run crashes.
2. Literature review

The two dominating area of transportation safety analysis are- crash frequency analysis and crash severity analysis. Lord
and Mannering (2010) provided a detailed research synthesis on crash frequency analysis methods and limitations for exam-
ining such data. Savolainen et al. (2011) presented a similar assessment on crash severity analysis. Recently, Chen et al.
(2016), Li et al. (2008), Sun et al. (2016) updated and bridged both of the previous synthesis studies. The conventional
approach to traffic safety analysis has been to establish relationships between a wider variety of variables and crash occur-
rence. Transportation safety researchers widely accepted machine learning and deep learning tools to investigate critical
safety issues. Tools that are widely used by the safety researchers are: decision tree (Chung, 2013; Figueira et al., 2017;
Khan et al., 2015; Saha et al., 2015), support vector machine (Chen et al., 2016; Li et al., 2008; Sun et al., 2016), rough sets
(Kim et al., 2008), text mining (Brooks, 2008; Brown, 2016; Gao and Wu, 2013), Twitter mining (Panagiotopoulos et al.,
2016), multiple correspondence analysis (Das et al., 2017a, 2018a; Das and Sun, 2015, 2016; Jalayer et al., 2018), association
rules mining (Ait-Mlouk et al., 2017; Das and Sun, 2014; Das et al., 2018c, 2018d; Geurts et al., 2005; Weng et al., 2016),
association rules negative binomial miner (Das et al., 2017b), and deep learning (Das et al., 2018b; Gilbert et al., 2017).

In 1994, Solnick and Hemenway (1994) first published a research article addressing a particular safety issue associated
with the hit and run crashes. In the years since the first study, a small number of studies have identified multitude factors
that contribute to hit and run occurrences (Aidoo et al., 2013; Bahrololoom et al., 2017; Kim et al., 2008; Lopez et al., 2017;
MacLeod et al., 2012; Roshandeh et al., 2016; Solnick and Hemenway, 1995; Tay et al., 2010, 2009, 2008; Zhang et al., 2014).
Some studies used FARS databases (MacLeod et al., 2012; Solnick and Hemenway, 1995, 1994), while others used state or
country-specific hit and run crash data (Aidoo et al., 2013; Kim et al., 2008; Tay et al., 2008). In the existing literature, only
one study focused on bicycle involvement in hit and run crashes (Bahrololoom et al., 2017). The studies mainly focused on
identification of critical contributing factors from a wide net of crash, vehicle, driver, roadway user, geometrics, and environ-
mental variables. Table 1 lists the studies conducted on hit and run crashes. This table provides list of used variables in the
studies, analytical procedures, and the major contributing factors derived from the study findings.

The reason behind fleeing depends mainly on the likelihood of being caught and the risk-taking tendency of the at-fault
driver. Thus, human factors play a crucial role in hit and run crashes. Many studies showed that vehicle type/age and human
factors are associated with hit and run crashes (Bahrololoom et al., 2017; Kim et al., 2008; Lopez et al., 2017; MacLeod et al.,
2012; Roshandeh et al., 2016; Solnick and Hemenway, 1995; Tay et al., 2010, 2009, 2008; Zhang et al., 2014). Driver and
vehicle information on the hit and run crashes are available only for the cases that have been identified in the police reports.
Additionally, solid evidence on driver and vehicle information is not available for many cases. As driver and vehicle informa-
tion is missing in many cases, the inclusion of these variables would make the data size small and biased to extract signif-
icant relationships. Although victim information is readily available in most of the hit and run crashes, the absence of driver
information would not help in extracting significant associations. Our research scope was limited to crash, geometric, and
environmental variables. However, the roadway environment plays a significant role in hit and run crash occurrences. It



Table 1
Data, methods, and key factors identified in previous studies.

Study Data/Years Variables used in the study Approach Key factors

Solnick and
Hemenway (1994)

FARS 1989–1990 pedestrian fatal crashes Day of week, time of day, driver (age, gender,
licensing status, previous DWI record, previous
license suspension, previous crash record, previous
speeding suspension, BAC), vehicle model

Logistic regression � Weekends, nighttime.
� Previous intoxication, previ-
ous DWI

� Male drivers
Solnick and

Hemenway (1995)
FARS 1989–1991 pedestrian fatal crashes Driver (age, gender, previous DWI record, license

validity, BAC), pedestrian (age, gender), region,
urban/rural, season, day of week, speed limit,
lighting

Exploratory analysis � Urban roadways, summer,
weekends, nighttime.

� Previous DWI, invalid license
� Male and young drivers
� Young pedestrians
� Intoxication

Kim et al. (2008) Hawaii (2002–2005) Gender, age, human factors, resident type, alcohol,
stolen, vehicle problem, location, roadway type,
surface condition, road defects, alignment, day,
time of day, weather.

Rough set analysis; Logistic
regression;

� Male, tourist, intoxicated
� Stolen vehicle driving
� Horizontal curve, weather,
lighting

Tay et al. (2008) Singapore (1992–2002) Time trend, time of day, occurrence area, vehicle
type, foreign vehicle, road type, location, surface,
surface condition, age, offending, gender, race,
collision type, maneuver, severity

Logistic regression � Bridges and flyovers, bends,
straight roads and shop
houses.

� Age group (45–69)
Tay et al. (2009) California FARS (1994–2005) Day of week, time of day, number of vehicles,

pedestrian involvement, collision type, functional
class, roadway type, median type, segment/
intersection, speed limit, traffic control device,
lighting, alignment, road surface, weather, special
jurisdiction, construction zone.

Logistic regression � Day of week, time of day,
number of vehicles, pedes-
trian involvement

� Collision type
� Route type, median type,
types of roadway segment,
speed limit, traffic control
device, functioning of traffic
control device, lighting con-
dition, horizontal alignment
and vertical alignment

Tay et al. (2010) Calgary (2010) Day of week, time of day, severity, road class,
weather, surface condition, lighting, vehicle age,
driver age, number of vehicles.

Logistic regression � Night, weekend, undivided
roadways

� Single vehicle
MacLeod et al. (2012) FARS 1998–2007 pedestrian fatal crashes Day of week, time of day, number of vehicles,

region, population density, season, age, gender,
lighting, traffic control, speed limit, BAC, prior DWI,
prior suspension, valid license, older vehicle.

Logistic regression � Early morning, poor light
conditions, and weekend

� Alcohol use and invalid
license.

Aidoo et al., 2013 Ghana pedestrian crashes (2004–2010) Year, region, road environment, day of week,
accident severity, weather condition, lighting, road
description, surface condition, location, traffic
condition,

Logistic regression � Lighting and weather
condition,

� Roadway type, median sepa-
ration, road surface condi-
tion and repair

� Location and traffic
condition

Zhang et al. (2014) Guangdong Province in China (2006–2010) 77 variables Logistic regression � Male, age (25–44), new dri-
vers, no valid license, no
insurance

� Wet road, merging lane, ele-
vated roadways
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Bahrololoom et al.
(2017)

Victoria, Australia bicycle crashes (2004–2013) Crash time, age, helmet use, speed zone, lighting,
intent, traffic control

Logistic regression � Dark AM (0:00 to 6:00 AM)
� Bicyclists age (>45 years)
� No bike helmet
� Speed limit >70 km/hr
� No traffic control
� Wrong way driving, wrong
way biking

� Lighting dark
Jiang et al. (2016) 13 urban road tunnels surrounding Huangpu river,

Shanghai (2011–2012)
Season, day of week, time of day, weather, speed
limit, number of lanes, tunnel length, crash type,
vehicle types, number of vehicles, severity

Logistic regression � Night, exit tunnel
� Season, day of week, speed
limit

Roshandeh et al.
(2016)

Cook county, Illinois (2004–2012) Day of week, population, crash type, severity,
urban/rural, national highway system, surface
condition, location, lighting, alcohol, intersection,
number of lanes, alignment, median type

Logistic regression Comparison between distracted
and non-distracted crashes are:
� Poor lighting condition
� Curve level
� Non-distracted drivers less
flee

Zhou et al. (2016) Cook county, Illinois (2004–2012) Time trend, time of day, occurrence area, vehicle
type, foreign vehicle, road type, location, surface,
surface condition, age, offending, gender, race,
collision type, maneuver, severity

Logistic regression � Variables contributing to hit-
and-run crashes varied for
different improper driving
behaviors.

Lopez et al. (2017) Boston bicycle crashes (2009–2012) Time of day, day of week, temperature,
precipitation, main street, intersection, taxi,
extended door, gender, age, severity, ethnicity

Logistic regression � Night, weekend
� Extended door
� Taxi
� Male bicyclists
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is very important to know at what roadway environment a driver flees a hit and run scene involved with a bicyclist. An in-
depth analysis of this issue has not been conducted before. The current study aims to mitigate this research gap.

Historically, studies examining hit and run crashes have focused on developing logistic regressions with a variety of crash,
environment, driver, victim, and roadway variables. As bicycle safety is a critical issue, there is a need for developing modern
predictive tools to understand the key undertakings associated with the bicycle-involved hit and run crashes. We aimed to
mitigate the current research gap by applying a predictive learning tool FFT to determine the key issues associated with
bicycle-involved hit and run crashes.
3. Fast and frugal tree (FFT)

Fast and frugal tree (FFT) is a heuristic for binary decisions. It is defined as a decision tree that has nþ 1 exits, with one
exit for each of the first n� 1 cues and two exits for the last cue or variable threshold. As process models of decision-making,
FFT makes predictions not only about what cues will influence decisions but also how decision makers might use these cues.
Initially, an FFT starts by checking the thresholds on the first cue to examine the exit condition and continues to the other
cues one after another until final exit criteria is met.

In considering only a few binary variables, FFTs, like all other heuristics, simplify decision problems. FFT is generally com-
posed of three building blocks, similar to take the best:

� Search rule: Look up predictor variables and attributes (variable categories) in the order of their importance.
� Stopping rule: Stop search as soon as one predictor allows it.
� Decision rule: Classify according to this predictor variable.

FFT was first introduced by Laura Martignon in 2003. This binary decision tree has at least one outcome or exit at every
node (cue or threshold of variable attribute set) and the decision led by the outcome will not be influenced by rest of
unchecked nodes (Martignon et al., 2003). Growing attention has been drawn to this algorithm in recent years in both aca-
demia and industries because of its effectiveness and robustness comparing to regression and other classification algorithms
(Luan et al., 2011; Phillips et al., 2017).

FFTs have three key advantages over the statistical and machine learning models. These advantages are based on the fru-
gality, simplicity, and prediction accuracy of the FFTs. First, FFTs tend to be both fast and frugal as they typically provide lean
decision outcomes. Second, the modeling results are very easy to understand. Finally, FFTs can make good predictions even
on the basis of a small amount of noisy data because they are relatively robust against a statistical problem known as over-
fitting (Phillips et al., 2017).

Three FFT algorithms, max, zigzag, and fan, are commonly used. First, two algorithms have been introduced by Martignon
et al. (2003), and the last one was introduced by Phillips et al. (2017). There are four tasks to construct FFT algorithms: select
cues; choose a decision threshold for each cue; rank cues; determine exit of each cue (Martignon et al., 2008; Martignon and
Hoffrage, 2002; Phillips et al., 2017). The main differences between Martignon’s and Phillips’ algorithms are: First, fan algo-
rithm takes sensitivity and specificity weighting parameters into consideration while selecting and ordering the cues. The
decision maker has the authorization to designate their desired weights of these error trade-offs; Second, fan algorithm sets
size restrictions of the decision tree rather than using all available cues as other two algorithms do.

The fan algorithm consists of two variants: ifan and dfan. The first step of constructing FFT is to determine the decision
threshold for each cue. Thresholds are single values for numerical cues and sets of factor values for nominal cues. Appling
each cue into to training dataset while ignoring others, the single value or factor could maximize the cue’s accuracy would
be selected. In ifan algorithm, the decision maker defines the measurement of the cue’s accuracy. Second, the order of cues is
ranked based on the value of cue’s accuracy. Different with max and zigzag algorithms, fan algorithm applies a stopping-par
to limit the number of cues can be used in the final algorithm. Then, a set of trees will be generated with a fixed order of cues
and all possible exit structures. The fan algorithm would choose the FFT with the highest accuracy.

An important assumption in the ifan algorithm, same as max and zigzag algorithms, is that all cues do not have any inter-
action. However, dependencies between cues are possible in some cases. The dfan algorithm has been developed to fill this
gap. Similar to the ifan algorithm, dfan still ranks cues based on the accuracy value. However, the dfan could iteratively recal-
culate the thresholds of each cue and rank cues based on subsets of cases to address the possible interactions rather than
only use their accuracy only once on the whole dataset (Phillips et al., 2017).
4. Data preparation

Dataset of the current study are police-reported crashes in Louisiana from 2010 to 2015. Among several variables, one of
them shows whether the crash was hit and run. Louisiana crash database contains four major data tables: (1) crash table, (2)
roadway inventory table known as DOTD table, (3) vehicle table, and (4) occupant table. The crash table contains crash and
environment-related information. The DOTD table contains roadway geometry information for each crash. The vehicle table
provides information on all involved vehicles. The driver information of each vehicle is also included in vehicle table. The
occupant table contains occupant information other than the drivers. All of these tables contain a unique identifier (CRASH_-



Fig. 1. Flowchart of data preparation.
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NUM) for each crash, which is generally used for data merging. At first, we identified hit and run crashes by using the hit and
run indicator column in the crash table. Later, we merged this table with DOTD and vehicle table. Vehicle table contains
supporting columns to identify bicycle involvement in a crash. The following rule was used to identify bicycle-involved in
hit and run crashes:

- Crash Table [Hit and Run Crash = Yes] AND
- Vehicle Table: [First Harmful Event = Pedalcycle OR Most Harmful Event = Pedalcycle OR Second Harmful Event = Pedal-
cycle OR Third Harmful Event = Pedalcycle OR Vehicle Type = Pedalcycle]

From the vehicle table, unique crash numbers are filtered to create the database of bicycle-involved hit and run crashes.
The rest hit and run crashes are tagged as not bicycle-involved hit and run crashes. Fig. 1 illustrates the data preparation task
in a flowchart.
5. Descriptive statistics

Fig. 2(a) illustrates the locations of the hit and run crashes and Fig. 2(b) shows the locations of the bicycle-involved hit
and run crashes in Louisiana. The locations reveal that majority of these crashes happened in urban areas and city streets. As
our goal is to identify patterns or significant factors of hit and run bicycle-involved crashes, a comparison between bicycle-
Fig. 2. (a) All Hit and Run crashes in Louisiana, (b) Hit and run bicycle crashes in Louisiana.
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involved and not bicycle-involved hit and run crashes was performed. Fig. 3(a) shows the percent distribution of hit and run
crashes (in relation to bicycle involvement or not) for the top ten cities with high hit and run frequencies in between 2010
and 2015. The blue dots indicate the percentage of not bicycle-involved crashes and the red dots indicate the percentage of
bicycle-involved crashes. For example, New Orleans city represents 56.9% (the percentage is calculated by dividing the
frequency of hit and run bicycle-involved crashes by frequency of all hit and run bicycle crashes in top 10 cities) of
bicycle-involved hit and run crashes. For not bicycle-involvement, this percentage is 43.4%. These two values indicate that
New Orleans data is over-represented for bicycle-involved hit and run crashes. The other cities that show high bicycle-
involved hit and run crashes are Opelousas, Lake Charles, Kenner, Houma, and Alexandria. Fig. 3(b) illustrates the percent
distribution of hit and run crashes for the DOTD districts. District 2 is over representative for hit and run crashes. For this
district, the bicycle-involvement shows high percentage than not bicycle-involvement. The other districts with higher
bicycle-involved hit and run crashes are District 3, District 7, and District 8.

Fig. 4 shows the heat chart of hit and run crash frequencies by year for each group with different severity levels. The
severity levels are defined with KABCO scale:

- K: Fatal
- A: Incapacitating injury
- B: Non-incapacitation injury
- C: Minor injury
- O: No injury or Property Damage Only (PDO)

The heat chart is the easiest and self-explanatory table to understand the variability for different cases (for example, year
and severity in Fig. 4). The table shows the following insights:

- Bicycle-involved crashes represent 1.0% of total hit and run crashes.
Fig. 3. (a) Percentage distribution of hit and run crashes in top 10 cities, (b) Percentage distribution of hit and run crashes in DOTD districts.



Hit and Run Crashes-- Not Bicycle-involved 
Year K A B C O Yearly Total 
2010 27 83 523 2,259 13,720 16,612 
2011 28 97 511 2,336 13,985 16,957 
2012 33 81 533 2,450 14,537 17,634 
2013 35 99 609 2,588 15,274 18,605 
2014 39 85 601 2,845 15,855 19,425 
2015 34 83 593 2,759 15,004 18,473 

Severity Total 196 528 3370 15,237 88,375 107,706 
Hit and Run Crashes-- Bicycle-involved 

Year K A B C O Yearly Total 
2010 2 5 28 49 54 138 
2011 2 11 56 45 47 161 
2012 8 3 56 76 52 195 
2013 1 8 48 80 65 202 
2014 2 7 51 95 57 212 
2015 5 5 69 55 55 189 

Severity Total 20 39 308 400 330 1,097 

Fig. 4. Yearly crash frequencies by severity types.
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- Not bicycle-involved hit and run crashes increased by 11.2% in 2015 from 2010. For bicycle-involved crashes, the growth
is 37.0%.

- Highest number of fatalities associated with bicycle-involved crashes happened in 2012. For non-bicycle related hit and
run crashes, 2014 shows the highest frequency.

Our study focused on a wider net of crash, geometric, and environmental variables for the preliminary analysis. Variable
selection is one of the key issues during the statistical modeling. Although fast and frugal decision tree can overcome issues
like missing data and outlier problem, we conducted correlation test and Goodman Kruskal test (Pearson, 2018) to identify
the correlation between both numerical and categorical factors. Goodman and Krustal’s tau measure is the association
between variables x and y is generally not the same as that between y and x. For example, two categorical variables, x
and y, havingM and N distinct values, we like to quantify the extent to which these variables vary or associate. This text uses
Cramer’s V measure (a normalized measure varies from 0 to 1) that can be defined as:
V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2

Nminf M � 1;N � 1ð Þg

s
ð1Þ
Several variables (for example, functional class) were dropped by observing the correlation outputs. Thirteen variables
were selected for the final analysis. The original database comprised a total of 108,803 hit and run crashes. The final dataset
for analysis included only 87,459 hit and run cases with all thirteen variables. Around 20% of the hit and run crashes were not
included in the final analysis due to the missing data problem. As this study is more focused on understanding the real road-
way environment that triggers a driver flee the scene of a bicycle involved hit and run crashes, missing value imputation was
not applied in this study. Pearson’s Chi-square test was performed to identify the variability of the attributes for each vari-
able in both groups: (1) hit and run bicycle-involved crashes, and (2) hit and run not bicycle-involved crashes. Table 2 lists
the frequency, percent distribution, and p-value (as a measure of significance) for each attribute for hit and run crashes.
Based on the p-values, 12 variables were found to be statistically significant (p � 0.05). The findings are stated below:

- Bicycle-involved hit and run crashes contribute approximately 1% of total hit and run crashes. The bicycle-involved fatal
crash percentage is ten times (around 10%) when compared with the percentage of all crashes.

- Right angle crashes are more likely to involve bicyclists. On the other hand, not bicycle-involved crashes are more
inclined towards rear-end crashes. These findings are partially consistent with Tay et al. (2009) study.

- Many studies showed that nighttime has a major influence on crash occurrences (Aidoo et al., 2013; Bahrololoom et al.,
2017; Lopez et al., 2017; Roshandeh et al., 2016; Solnick and Hemenway, 1995; Tay et al., 2010, 2009, 2008). Tay et al.
(2008) mentioned that ‘lighting condition is a crucial factor in determining whether the driver leaves the scene without
reporting the crash or not. Inadequate lighting may encourage hit-and-run behavior because of the perceived lower prob-
ability of being identified.’ In low light conditions, the perpetrators are more likely to flee (MacLeod et al., 2012; Solnick
and Hemenway, 1995; Tay et al., 2008, 2009, 2010). In contrast, when the crash occurs in daylight, drivers may decide to
remain at the scene because they realize that the chance of escaping detection is low (Solnick and Hemenway, 1995).
Around 63% of bicycle involved hit and run crashes happened at nighttime (7 PM–6 AM). The lighting condition statistics
also show that around 39% of the crashes happened during dark light condition and dawn/dusk.



Table 2
Chi-square test statistics for selected categorical variables.

Description Not Bicycle-
involved

Bicycle-
involved

p-
value

Description Not Bicycle-
involved

Bicycle-
involved

p-
value

Count 86,554 905 Alignment (%) <0.001
Collision_Type (%) <0.001 Straight 79,082 (91.4) 874 (96.6)
Right Angle 9159 (10.6) 315 (34.8) Curve 4479 (5.2) 14 (1.5)
Rear End 30,047 (34.7) 129 (14.3) Others 2993 (3.5) 17 (1.9)
Head On 1980 (2.3) 32 (3.5) Road_Type (%) 0.001
Sideswipe 27,034 (31.2) 246 (27.2) One Way 12,558 (14.5) 164 (18.1)
Turning 6195 (7.2) 93 (10.3) Two Way Div. 28,621 (33.1) 259 (28.6)
Single Vehicle 11,881 (13.7) 88 (9.7) Two Way

Undiv.
43,817 (50.6) 472 (52.2)

Others 258 (0.3) 2 (0.2) Others 1558 (1.8) 10 (1.1)
Time_of_Day (%) <0.001 Highway_Type

(%)
<0.001

1 AM–6 AM 12,306 (14.2) 85 (9.4) City Street 34,411 (39.8) 587 (64.9)
7 AM–12 PM 17,791 (20.6) 161 (17.8) Parish Road 9736 (11.2) 75 (8.3)
1 PM–6 PM 31,501 (36.4) 343 (37.9) Interstate/U.S.

Hwy/State
Hwy

41,202 (47.6) 225 (24.9)

7 PM–12 AM 24,956 (28.8) 316 (34.9) Others 1,205 (1.4) 18 (2.0)
Day_of_Week =Weekend

(%)
26,006 (30.0) 270 (29.8) 0.919 Locality (%) <0.001

Season (%) <0.001 Business 26,290 (30.4) 212 (23.4)
Fall 21,532 (24.9) 245 (27.1) Mixed 26,827 (31.0) 365 (40.3)
Winter 20,835 (24.1) 173 (19.1) Residential 22,563 (26.1) 281 (31.0)
Spring 23,258 (26.9) 224 (24.8) Others 10,874 (12.6) 47 (5.2)
Summer 20,929 (24.2) 263 (29.1) Lighting (%) 0.002

Intersection = Yes (%) 31,649 (36.6) 480 (53.0) <0.001 Daylight 49,282 (56.9) 539 (59.6)
Access_Control (%) <0.001 Dark 33,013 (38.1) 322 (35.6)
Full Control 10,172 (11.8) 21 (2.3) Dawn/Dusk 1965 (2.3) 32 (3.5)
Partial Control 6471 (7.5) 62 (6.9) Others 2294 (2.7) 12 (1.3)
No Control 68,867 (79.6) 805 (89.0) Weather (%) <0.001
Others 1044 (1.2) 17 (1.9) Clear 63,957 (73.9) 733 (81.0)

Severity = PDO (%) 69,450 (80.2) 266 (29.4) <0.001 Rain/Cloudy/
Fog

20,707 (23.9) 155 (17.1)

Others 1890 (2.2) 17 (1.9)
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- Two way undivided roadways show higher propensity towards bicycle-involved hit and run crashes. Non bicycle-
involved crashes are also overrepresented on two way undivided roadways. This finding contradicts with the findings
of Tay et al. (2008), which showed that crashes on undivided roads decreased the probability of hit-and-run when
compared to crashes on one-way roads. Divided highways without traffic barriers and divided highways with median
strips and two-way continuous left-turn lanes are believed to reduce hit-and-run behavior in fatal crashes compared with
undivided and one-way streets (Zhang et al., 2014).

- Our study showed that weekend is not statistically significant in differentiating between bicycle-involved and not
bicycle-involved hit and run crashes. Our findings are similar to three studies (Tay et al., 2008, 2009; Zhang et al.,
2014). However, other studies showed that probability of hit and run behavior in fatal crashes is higher on weekends than
weekdays (MacLeod et al., 2012; Solnick and Hemenway, 1995; Tay et al., 2009).

- The results show that – in line with the literature (Solnick and Hemenway, 1995) – fall and summer are dominating attri-
butes in bicycle-involved hit and run crashes.

- Inclement weather does not contribute much in hit and run crashes for both groups. Other studies also showed that
weather conditions have no evident effect on hit and run crashes (Tay et al., 2008, 2010; Zhang et al., 2014).

- The present study adds to the literature by finding that residential and mixed (business and residential) locations show
higher propensity towards bicycle-involved hit and run crashes.

- Crash severity patterns are significantly different in bicycle-involved and not bicycle-involved hit and run crashes.
Around 70% of the bicycle-involved crashes are KABC. On the other hand, this percentage is 20% for non bicycle-
involved group. This is an obvious finding. As bicyclists are the vulnerable road user groups, fatalities and injuries are
more dominant in bicycle-involved hit and run crashes.

- An increased risk of hit and run incidents is associated with urban locations (MacLeod et al., 2012; Solnick and
Hemenway, 1995). Our study showed that 65% of bicycle-involved crashes occurred on city streets.

- Our study showed that roadways with no access control are overrepresented in both groups. This finding is in line with
Tay et al. (2009) study, which stated that ‘crashes occurring at locations with properly or improperly functioning traffic
control devices are less likely to result in hit-and-run than crashes at locations where the traffic control devices are not
functioning’.



Fig. 5. First and frugal tree outputs by considering all data as a training group.
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- Consistent with Tay et al. (2009) study, our study found that curve aligned roadways are not skewed towards hit and run
crashes.

6. Model development

The final dataset used for FFT analysis consists of 87,459 hit and run crashes with 13 variables. The preliminary model
involves the whole dataset as the training set to develop the model (as shown in Fig. 5). To evaluate the performance of
the model, both training (a dataset with 70% from bike-involved crashes, and 70% from not bike-involved crashes), and test-
ing (the rest 30% from each group) was used in the final analysis. The research team extensively used R package ‘FFTrees’ to
perform the analysis and data visualization (Phillips et al., 2017). As this study aims to determine the decision factors asso-
ciated with a hit and run bicycle crash occurrence, severity is considered as the response variable. This is also justified for
two other findings: (1) severity is found as the most significant variable in the variable importance assertion, and (2) descrip-
tive statistics show that 70% of the hit and run bicycle crashes involved some sort of injury. Fig. 6(a) and (b) illustrate the
outputs of FFTs by using training and testing data respectively. This study applied random data selection procedure for



Fig. 6. (a) First and frugal tree outputs for the training data (70% of randomly selected data), (b) First and frugal tree outputs for the testing data (rest 30%
data, which are not used for model development.)
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the training and test datasets. A total of 20 different training and test sets were selected. This study applied FFT algorithms
on all 20 training and 20 test set data. The outputs shown in this study are the mean trend of the similar outputs. The output
visualization has three basic parts: top part, middle part, and bottom part.

- The top panel shows information about the dataset, including the frequencies and percentage distributions of bicycle-
involved and not bicycle-involved cases. For example, top part of Fig. 5 indicates that the sample size of the dataset is
87,549. The count of bicycle-involved hit and run crashes is 905, which represents 1% of the total hit and run crashes.

- The middle part contains the FFT and icon arrays showing the count and confusion table matrices at each node. It is inter-
esting that FFTs developed for each cases (complete data as training data, randomly selected 70% data as training data,
and randomly selected 30% data as test data) are same. It indicates that three major thresholds can identify the key mea-
sures for bicycle-involvement in hit and run crashes: KABC severity, right-angle/turning/head on collisions, and city
streets/others.

- The bottom part shows the FFT’s performance in receiver operating characteristics (ROC) curve, confusion matrix, and
levels for a range of statistics.

A confusion matrix table provides a simple representation of the model’s accuracy and the types of errors the model
makes. The values in cells tp and tn infer the correct prediction (true positive and true negative), whereas counts in cells
fp and fn refer to errors (false positive and false negative). The FFT algorithm is designed such a way that it targets to max-
imize frequencies in cells tp and tn while minimizing those in cells fp and fn. This study focused on five important measures:
sensitivity (sens), specificity (spec), overall accuracy (acc), weighted accuracy, and balanced accuracy (bacc). These terms can
be expressed as follows:
Sensitivity ðsensÞ ¼ tp
tpþ fn

ð1Þ

Specificity ðspecÞ ¼ tn
tnþ fp

ð2Þ
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Accuracy ðaccÞ ¼ tpþ tn
tpþ fpþ fnþ tn

ð3Þ
Weighted ccuracy waccð Þ ¼ tp
tpþ fn

�wþ tn
tnþ fp

� 1�wð Þ ¼ sens�wþ spec � ð1�wÞ ð4Þ
Balanced Accuracy baccð Þ ¼ tp
tpþ fn

þ tn
tnþ fp

� �
� 0:50 ¼ sensþ spec

2
ð5Þ
where,
tp ¼ true positive (correct hit)
fn ¼ false negative (miss)
tn ¼ true negative (correct rejection)
fp ¼ false negative (false alarm)
w ¼ weighting factor
Sens represents the percentage of cases with positive criterion values that are correctly predicted by the algorithm. Sim-

ilarly, spec infers the percentage of cases with negative criterion values correctly predicted by the algorithm. The next three
measures define accuracy across all cases. Accuracy ðaccÞ is defined as the overall percentage of correct decisions by ignoring
the difference between hits and correct rejections. To make a balance between sensitivity and specificity, one can use the
measure named as weighted accuracy ðwaccÞ. This measure depends on a weighting factor, which ranges in between 0
and 1. In cases, when sensitivity is more important than specificity, one can consider the weighting factor above 0:50. For
an ideal balance, one can use 0:50, which can be termed as bacc.

The ifan algorithm explicitly selects and ranks cues (threshold of variable category or category-groups) accuracies. Visu-
alizing marginal cue helps in understanding the ranking of each cues in terms of balanced accuracy ðbaccÞ. The top five cues
are colored and described in the legend. All other cues in the data are shown as black points. Fig. 7 shows the resulting plot
for the training data (70% of all hit and run crashes). Inspecting the graph reveals that the three cues (severity, collision type,
and highway type) used in FFT #1 have the highest individual wacc values. Fig. 7 also shows that the two next best cues are
intersection, and locality. This information can be useful in guiding a top-down process of future FFT construction. Table 3
shows bacc values for all 13 variables. Day of the week shows lowest bacc values, which is in line with the findings of chi-
square test.

A useful way to present the characteristics of a diagnostic test is the ROC curve. A ROC curve illustrates the trade-off
between sensand spec in classification algorithms. As sens increases, spec decreases (i.e., 1� spec increases). Ideal perfor-
mance (bacc ¼ 1:0), is represented by the cross in the upper-left corner. The bottom right plot shows the performance of
Fig. 7. Top five cue (threshold of variable attribute groups) accuracies.



Table 3
Accuracies of the variable thresholds.

Variables Threshold Direction bacc

Severity KABC = 0.7542
Collision_Type Right Angle, Turning, Head On = 0.6430
Highway_Type City Street, Others = 0.6285
Intersection Yes = 0.5824
Locality Mixed, Residential = 0.5716
Access_Control No Control, Others = 0.5503
Time_of_Day 7 PM–12 AM, 1 PM–6 PM = 0.5380
Weather Clear, Not Reported = 0.5377
Season Summer, Fall = 0.5354
Alignment Straight = 0.5260
Road_Type One Way, Two Way Undiv. = 0.5257
Lighting Daylight, Dawn/Dusk = 0.5194
Day-of_Week Weekday = 0.5041

Table 4
FFT outputs.

Dataset % of
Complete
Dataset

Count of Hit
and Run
Crashes

Count of Bicycle-
involved Hit and
Run Crashes

Count of Not
Bicycle-involved Hit
and Run Crashes

tp fn tn fp sens spec acc bacc

Complete 100% 87,459 905 86,554 736 169 62,577 23,977 81.33 72.30 72.39 76.82
Training 70% 61,222 634 60,588 520 114 43,743 16,845 82.02 72.20 72.30 77.11
Testing 30% 26,237 271 25,966 217 54 18,670 7287 80.07 71.93 72.01 76.00
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all FFTs in ROC space (green circles with numbers correspond to FFTs). FFT #1 has the highest weighted accuracy (colored in
solid green). Additional points in this plot correspond to the performance of competing classification: standard decision trees
(CART), logistic regression (LR), random forests (RF), and support vector machines (SVM). This study examines the potential
of using an optimized method to better interpret the results. The current study does not provide discussions on other
machine learning models as it is not in the scope of the analysis. These machine learning models are used here to justify
the strength of a simple algorithm like FFT. It is important to note that the application of machine learning encounters hur-
dles to interpret a machine learning model or to explain the outcomes. FFT has an advantage over machine learning models
due to its easy interpretability. In our study, FFT #1 has a higher sens than other algorithms, but at the cost of a lower spec.

Table 4 lists the model comparison results for three datasets: complete, training, and testing. It shows that the measure
parameters (sens, spec, acc, and bacc) are almost identical for complete and training data. The balanced accuracy is higher for
complete, and training dataset. For testing data, the accuracy is promising (around 76%). Our study showed that a simplified
FFT can perform better than complex machine learning models (CART, RF, and SVM) in terms of sens. As FFT algorithm has
exit branch on every node, they typically make data representation faster than standard decision trees while simultaneously
being easier to understand and use than other machine learning black box approaches.
7. Conclusions

The issue of cyclist safety is crucial. Hit and run crashes refer to crashes where at-fault drivers flee crash scenes without
reporting the incidents to the emergency response services or similar authorities. Due to lack of immediate emergency med-
ical assistance, hit and run crashes could significantly increase the likelihood of serious injury and even fatality for vulner-
able roadway users like bicyclists. Fleeing from the crash location is more likely to depend on the situational factors
surrounding the crash. To reduce the occurrences of these crashes, it is crucial to identify appropriate associations. We used
all hit and run crashes in Louisiana for six years (2010–2015) and particularly identifies patterns associated with bicycle
involvements.

Many factors affect the instantaneous decision to leave the scene of a crash. In the current study, various factors which
might been associated with hit and run decisions were taken into account, including collision type, day of week, time of day,
season, crash severity, roadway type, locality, highway type, alignment, access control, lighting, intersection presence, and
weather. It was found out that variables contributing to hit and run crashes varied based on the involvement of bicycles
in the crashes. Results from FFT heuristics revealed that crash severity, collision type, and highway type were the most
important predictors of bicycle involvement in hit and run crashes. Crash severity (KABC) shows the most influential factor
that is associated with the bicycle-involved hit and run crashes. Next most strongly associated with the bicycle-involved hit
and run crashes is collision types in relation to right-angle/turning/head on collisions. The third influential cue is city street/
others. These findings are in line with findings from earlier studies (Aidoo et al., 2013; Bahrololoom et al., 2017; Kim et al.,
2008; Lopez et al., 2017; MacLeod et al., 2012; Roshandeh et al., 2016; Solnick and Hemenway, 1995; Tay et al., 2010, 2009,
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2008; Zhang et al., 2014). The present study adds to the literature by finding that residential and mixed (both business and
residential) localities are over-represented in the bicycle-involved hit and run crashes. Surprisingly, weekends, dark lighting
condition, and roadway types (e.g., two way undivided roadways) were not determined as key contributing factors in the
bicycle-involved hit and run crashes. However, variabilities of these attributes in the two groups (bicycle-involved and
not bicycle-involved) were statistically significant in the preliminary analysis. Our model perform better than complex
machine learning models regarding sensitivity. Findings from our study will provide valuable insights for hit and run bicycle
crash reduction in both planning and operation levels.

Our study is subject to several limitations that call for future studies. One problem is that the current study focused lar-
gely on reported hit and run cases for which there was complete information on geometric and environmental factors. Future
studies can incorporate additional variables like population and demographic characteristics, unbiased driver information,
and real-time driver behavior. However, the contribution of built roadway environment during the crash occurrence is
highly associated with hit and run crash occurrences. It is important for the safety professionals to know at what roadway
environment a driver flees a hit and run scene involved with a bicyclist. The major contribution of this study is to investigate
the tipping point of the hit and run bicycle crash occurrence. The findings of this study can help the safety researchers to
design the environment suitable for reducing hit and run bicycle crashes. Additionally, more improvements and enhance-
ments in the FFT algorithms can be done by extending the tree structures. Notwithstanding these limitations, our study
added a simplified decision mechanism (with high accuracies) to identify bicycle-involved hit and run crashes instead of
incorporating more complex and black box machine learning algorithms. Multiple correspondence analysis (MCA) could
be a useful tool in exploring the association patterns in the complex dataset of hit and run crashes. MCA with missing data
handling algorithm would be effective in reducing the biases associated with the missing driver information. One such study
by the authors is currently in progress.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijtst.2018.11.001.
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